

Impact summary

18/11/2025

Supports

GOFOREST

356

trees planted

GOOCEAN

7

coral spiders installed

with 16 coral fragments

each

GOFOREST

62.30

tonnes of CO₂

absorbed during lifetime

Okegem project, Belgium 2024-2025

356 trees planted

In this project in Okegem, we undertake an afforestation of a former agricultural plot of 3.22 hectares. We will plant at least 5000 trees during the season of 2024-2025. The tree species that will be used in the plantation include Sycamore maple, black alder, European hornbeam, Cornelian cherry, common dogwood, hazel, hawthorn, spindle, European beech, European ash, wild cherry, pedunculate oak, white willow, small-leaved lime, and large-leaved lime. This new forest will enhance the water cycle, soil protection, biodiversity protection and conservation, and carbon sequestration. In the case of afforestation of agricultural land, the reduction in inputs and the absence of heavy tillage can also be noted. In the coming years, the project can be extended.

Reef restoration with customized coral spiders in Indonesia

O Nusa Penida, Bali, Indonesia

7 coral spiders installed

Coral reefs are resilient ecosystems found throughout the oceans, from deep, cold waters to shallow, tropical waters. However, because of increased frequency of threats and disturbances, the reefs get damaged and often do not have enough time to naturally repair themselves. With this coral reef restoration project in collaboration with Project Laut, we are rebuilding damaged — and expanding healthy — coral reefs, so they can provide all the coral reef ecosystem benefits. In the restoration, we use the spider (or "reef star") technique, in which individual metal structures are welded together into a spider structure. Once the spider is created, a coat of cement paint is applied. This prevents the leaching of iron into the ecosystem and acts as an attractive base of attachment for the coral. On the upward-facing part of the spider, an engraved name tag made from bamboo is placed. After that, the spiders are left in the ocean for 4 - 6 weeks to become coated in coralline algae. Once the spiders are coated in algae, the reef is carefully combed to find naturally broken, yet still living coral fragments from a variety of coral genera. These fragments are then attached to the spiders using zip ties. As the zip ties become overgrown, excess material is carefully removed to avoid harming wildlife. We attach 16 coral fragments to one coral spider and each spider occupies 0,35 square meters of seafloor. Through the customization of a spider with a name tag, the spider technique allows for transparent monitoring of the coral growth and reef health. This tailored approach ensures transparent and effortless reporting on the progress of restoration efforts. All restoration work is done by the team of Project Laut, the local communities, or interns trained for these techniques and receive an income from maintaining and gardening the ocean the same way they do on land. The projects do not only create an ecological but also social and economic positive impact. Besides rebuilding the reefs, reducing the local threats, engaging communities and tourists, and bringing more awareness are also very important

Care for communities

